Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chinese Journal of Burns ; (6): 195-200, 2022.
Article in Chinese | WPRIM | ID: wpr-935995

ABSTRACT

The damage of sweat glands in patients with extensive deep burns results in the loss of thermoregulation, which seriously affects the quality of life of patients. At present, there are many researches on the repair of sweat gland function, but the mechanism of human sweat gland development has not been fully clarified. More and more studies have shown that the cascaded pathways of Wnt/β-catenin, ecto- dysplasin A/ectodysplasin A receptor/nuclear factor-κB, sonic hedgehog, and forkhead box transcription factor jointly affect the development of sweat glands, and it has been reported that the cascaded signaling pathways can be used to achieve the reconstruction of sweat adenoid cells in vitro. This article reviews the signaling pathways that affect the development of sweat glands and their involvement in the reconstruction of sweat adenoid cells in vitro.


Subject(s)
Humans , Adenoids/metabolism , Hedgehog Proteins/metabolism , Quality of Life , Signal Transduction , Sweat/metabolism , Sweat Glands/physiology
2.
China Journal of Chinese Materia Medica ; (24): 2400-2408, 2022.
Article in Chinese | WPRIM | ID: wpr-928119

ABSTRACT

Traditional Chinese medicine has unique advantages in the treatment of degenerative bone and joint diseases, and its widely used in clinical practice. In recent years, many scholars have conducted a large number of basic studies on the delay of intervertebral disc degeneration by herbal compound and monomeric components from different perspectives. In order to further elucidate its mechanism of action, this paper summarizes the in vivo and in vitro experimental studies conducted at the level of both herbal compound and single components, respectively, in order to provide references for the basic research on the treatment of lumbar intervertebral disc degeneration by Chinese medicine. A summary shows that commonly used herbal compound prescriptions include both classical prescriptions such as Duhuo Jisheng Decoction, as well as clinical experience prescriptions such as Yiqi Huoxue Recipe. Angelicae Sinensis Radix, Chuanxiong Rhizoma, Rehmanniae Radix Praeparata, Achyranthis Bidentatae Radix, and Eucommiae Cortex were used most frequently. Tonic for deficiency and blood stasis activators were used most frequently. The most utilized monomeric components include icariin, ginsenoside Re, salvianolic acid B and aucubin. The main molecular mechanisms by which herbal compound and monomeric components delay of lumbar intervertebral disc degeneration include improving the intervertebral disc microenvironment, promoting the synthesis of aggregated proteoglycans and type Ⅱ collagen in the intervertebral disc, reducing the degradation of the extracellular matrix, and inhibiting apoptosis in the nucleus pulposus cells, etc. The main signaling pathways involved include Wnt/β-catenin signaling pathway, MAPK-related signaling pathway, mTOR signaling pathway, Fas/FasL signaling pathway, PI3 K/Akt signaling pathway, NF-κB signaling pathway, JAK/STAT signaling pathway, and hedgehog signaling pathway, etc.


Subject(s)
Humans , China , Drugs, Chinese Herbal/therapeutic use , Hedgehog Proteins/metabolism , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Wnt Signaling Pathway
3.
Int. j. morphol ; 36(2): 693-698, jun. 2018. graf
Article in Spanish | LILACS | ID: biblio-954173

ABSTRACT

Sonic hedgehog (Shh) es un morfógeno esencial para el desarrollo de diversas estructuras, tales como notocorda, placa del piso del tubo neural, miembros, entre otros. Se buscó determinar la inmunolocalización de Shh en embriones y fetos de ratón. Para ello, se eutanasiaron 10 ratones gestantes (Mus musculus) BALB/c, un grupo de 5 animales a los 12,5 días post-coito (dpc), y otro grupo a los 17,5 dpc. Los embriones y fetos obtenidos fueron fijados en formalina al 10 % tamponada en PBS e incluidos en paraplast. Se realizaron cortes transversales seriados. Se utilizó anticuerpo policlonal Shh (Santa Cruz Biotechnology, H-160, conejo), dilución 1:100. Se identificó y describió la inmunolocalización de las muestras marcadas positivamente. La expresión de Shh en los embriones de 12,5 dpc fue inmunopositiva en notocorda, placa del piso del tubo neural, precartílago de radio y ulna, y prácticamente todos los epitelios: bronquial, intestinal, vejiga y uretra. En la etapa fetal, a los 17,5 dpc la inmunopositividad desaparece en el cartílago a excepción de zonas de osificación, disminuye en la epidermis pero aparece en folículos pilosos. La mucosa intestinal se ha diferenciado en segmentos, mostrando una inmunotinción mayor a nivel de las vellosidades intestinales. Shh actúa en distintos estadios del periodo gestacional, siendo clave en la diferenciación de distintas estructuras. En etapas embrionaria, es vital en la formación del sistema nervioso, organogénesis y formación de miembros, por lo que su expresión se encuentra en estas zonas. Sin embargo, en la etapa fetal la expresión cambia a estructuras de mayor especialización como folículo piloso y vellosidades intestinales.


Sonic hedgehog (Shh) is an essential morphogen for the development of various structures, such as notochord, neural tube floor plate, limbs, among others. We sought to determine the immunolocalization of Shh in embryos and mouse fetuses. To do this, 10 pregnant mice (Mus musculus) BALB /c were euthanized, a group of 5 animals at 12.5 days postcoitus (dpc), and another group at 17.5 dpc. Embryos and fetuses obtained were fixed in 10 % formalin buffered in PBS and embedded in paraplast. Serial cross sections were made. Polyclonal antibody Shh (Santa Cruz Biotechnology, H-160, rabbit), dilution 1:100 was used. The immunolocalization of the positively labeled samples was identified and described. Shh expression in 12.5 dpc embryos was immunopositive in notochord, neural tube floor plate, radius precartilage and ulna, and practically all epithelia: bronchial, intestinal, bladder and urethra. In the fetal stage, at 17.5 dpc the immunopositivity disappears in the cartilage except for areas of ossification, decreases in the epidermis but appears in hair follicles. The intestinal mucosa has differentiated into segments, showing greater immunostaining at the level of the intestinal villi. Shh acts in different stages of the gestational period, being key in the differentiation of different structures. In embryonic stages, it is vital in the formation of the nervous system, organogenesis and formation of limbs, so its expression is found in these areas. However, in the fetal stage the expression changes to more specialized structures such as hair follicles and intestinal villi.


Subject(s)
Animals , Female , Mice , Organogenesis/physiology , Hedgehog Proteins/metabolism , Embryonic and Fetal Development , Immunohistochemistry , Embryo, Mammalian , Mice, Inbred BALB C
4.
Indian J Exp Biol ; 2013 Mar; 51(3): 201-207
Article in English | IMSEAR | ID: sea-147583

ABSTRACT

In the experimental group (shh inhibited group), there were significant decreases in the expression of Oct4, Nanog, Shh, GATA4, Brachyury and Goosecoid, while increases were observed for TAT and Pdx1. The expression of Sox17 did not differ between two control and experimental groups. In experimental group, the amount of GSC positive cells was somehow lower but it seems that there was no difference for Sox17. Shh inhibition induces ESCs to differentiate toward definitive endoderm by committing mesendodermal lineages.


Subject(s)
Animals , Cell Differentiation , Cell Line , Cell Lineage , DNA Primers , Dithizone/pharmacology , Embryonic Stem Cells/cytology , Endoderm/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Homeodomain Proteins/metabolism , Immunohistochemistry , Mesoderm/metabolism , Mice , Microscopy, Fluorescence , Octamer Transcription Factor-3/metabolism , Reverse Transcriptase Polymerase Chain Reaction
5.
Biol. Res ; 44(1): 63-67, 2011. ilus
Article in English | LILACS | ID: lil-591865

ABSTRACT

Proliferation and cell fate determination in the developing embryo are extrinsically regulated by multiple interactions among diverse secreted factors, such as Sonic Hedgehog (SHh), which act in a concentration-dependent manner. The fact that SHh is secreted as a lipid-modified protein suggests the existence of a mechanism to regulate its movement across embryonic fields. We have previously shown that heparan sulfate proteoglycans (HSPGs) are required for SHh binding and signalling. However, it was not determined which specific HSPG was responsible for these functions. Here we evaluated the contribution of perlecan on SHh localization and activity. To understand the mechanism of action of perlecan at the cellular level, we studied the role of perlecan-SHh interaction in SHh activity using both cell culture and biochemical assays. Our findings show that perlecan is a crucial anchor and modulator of SHh activity acting as an extracellular positive regulator of SHh.


Subject(s)
Animals , Humans , Mice , Rats , Brain/drug effects , Heparan Sulfate Proteoglycans/pharmacology , Signal Transduction/drug effects , Brain/metabolism , Chromatography, Gel , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Heparan Sulfate Proteoglycans/isolation & purification , Heparan Sulfate Proteoglycans/metabolism , Heparan Sulfate Proteoglycans/physiology , Immunohistochemistry
6.
Int. j. odontostomatol. (Print) ; 1(1): 7-15, jul. 2007. ilus
Article in Spanish | LILACS | ID: lil-530276

ABSTRACT

La regulación del crecimiento y desarrollo cráneo-facial está controlada por una serie de interacciones celulares y con la matriz extracelular que estimulan los procesos de proliferación y diferenciación. De fundamental importancia es la cresta neural, una población de células especializadas de células progenitoras que generan los huesos, cartílagos y tejido conectivo de la región. La mandíbula se forma por osificación membranosa en el mesénquima del primer arco faríngeo, pero desarrolla cartílagos secundarios como centros de crecimiento en el cóndilo, en el proceso coronoídeo, en el ángulo mandibular y en la sutura intermaxilar (sínfisis). Estos cartílagos difieren en su origen, su estructura histológica y su respuesta a factores hormonales, metabólicos y mecánicos con respecto a los cartílagos de los huesos largos. Debido a que las células proliferativas son mesenquimáticas y no cartilaginosas, los mecanismos celulares y moleculares que regulan el crecimiento en los cartílagos secundarios, son todavía muy poco conocidos. Los productos génicos BMP (proteina morfogenética de hueso), Ihh (Indian hedgehog), FGF (factor de crecimiento de fibroblastos), Sox-9 y VEGF (factor de crecimiento vascular endotelial) son de gran importancia en el crecimiento mandibular. Este trabajo resume la información reciente acerca de los factores de crecimiento y factores de transcripción, potenciales reguladores del proceso de osificación membranosa y del crecimiento de los cartílagos secundarios de la mandíbula.


Regulation of growth and craniofacial development is controlled by the interactions of cells with each other and with the extracellular environment through signal transduction pathways that control the differentiation process by stimulating proliferation or causing cell death. Of fundamental importance to mandibular development is the neural crest, a specialized population of stem and progenitor cells which generate the bone, cartilage and conjunctive tissue of the first branchial arch. The mandible arises by intramembranous ossification, but develops secondary cartilages as growth centers. Secondary cartilages of the mandible arise in the condylar process, in the coronoid process, angular process of the mandible, and in the intermandibular suture (mental symphysis). These are different, not only in their origins, but in their histologic organization and in their response to hormonal and mechanical factors with articular cartilages of long bones. Because the cells that divide to effect growth and adaptation in these cartilages are of perichondrial/periosteal rather than chondrogenic origin, the cellular and molecular mechanisms that regulate their growth are only beginning to be understood. The main differences of secondary cartilages from cartilages of the limbs and cranial base are, that condylar condroblasts arise from undifferentiated conjuntive cells and the appearance of vascular canals that cross cartilage perpendicularly and connect with the ossification zone. Collagen type I seems to be more important in this process than collagen type II. BMP signaling maintains regulatory roles in skeletons and skeletal growth. Indian hedgehog, Sox-9, fibroblastic growth factor (FGF) and vascular endothelial growth factor (VEGF), are also important in mandibular growth. This article summarizes information regarding growth factors and transcription proteins that are potential growth regulators in these secondary cartilages.


Subject(s)
Humans , Mandible/growth & development , Chondrogenesis , Cartilage/growth & development , Mandibular Condyle/growth & development , Vascular Endothelial Growth Factor A/metabolism , Fibroblast Growth Factors/metabolism , Osteogenesis , Hedgehog Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL